

CONSULTANTS IN NOISE & VIBRATION

Commercial 1 (Unit 27)

+612 9587 9702

DELIVERING SOUND ADVICE

ABN: 12 058 524 771

637-645 Forest Road

office@koikasacoustics.com

Bexley NSW 2207 www.koikasacoustics.com

CERTIFICATE OF PERFORMANCE

IMPACT SOUND INSULATION

GERFOR AUSTRALASIA

Date: Friday, 22 March 2024

File Reference: 3739R20240307tbGerflorAustralasia_Cushionoak

DOCUMENT CONTROL

Project title	Certificate o	f Performanc	e
	Impact Soui	nd Insulation	
	Gerfor Austr	alasia	
Project number	3739		
Document reference	3739R20240	307tbGerflor/	Australasia_Cushionoak
Document path			ustics 2024\REPORT\Partition Testing Impact\3739 (tb) Gerflor
Date	Author	Review	Notes
22/03/2024	ТВ	NK	Report available for issue
Prepared By	Tony Basa		
	Acoustic Co	nsultant	
Approved by	Nick Koikas		Member of the Australian Acoustical Society - MAAS
	Director		Australian
	Mille		acs Acoustical Society
Client	Gerfor Austr	alasia	
	Attention: S	teven Gradec	ak
	Email: sgra	decak@gerf	<u>lor.com.au</u>

The information contained herein should not be reproduced except in full. The information provided in this report relates to acoustic matters only. Supplementary advice should be sought for other matters relating to construction, design, structural, fire-rating, waterproofing, and the like.

koikas acoustics

Date: 22 March 2024

File Reference: 3739R20240307tbGerflorAustralasia_Cushionoak

Prepared For: Gerfor Australasia

CERTIFICATE OF PERFORMANCE

IMPACT SOUND INSULATION

GERFOR AUSTRALASIA

CONTENTS

1.0	INTR	ODUCTION4	Į
2.0	TEST	LOCATION AND CONDITIONS	;
2.1	TE	STING SITE	5
2.2		B-BASE AND FLOORING SYSTEM	
2.3	TE	STING SAMPLES	5
3.0	IMPA	CT NOISE RATING CRITERIA	j
3.1	ВС	A 2022	õ
3.2	AA	AC STAR RATING SYSTEM	ĵ
4.0	ASSE	SSMENT/TESTING PROCEDURES	7
4.1	PA	RTITION TESTING	7
4.	1.1	Generation of the sound field in the source room	7
4.	1.2	Receiving space measurement	7
4.	1.3	Reverberation time and background noise	7
5.0	MEAS	SURED RESULTS AND ANALYSIS	3
6.0	CONC	CLUSION10)
TABLE	OF AP	PENDICES	
Appen	dix A:	Calculations and Graphs for Impact Noise Testing	-

koikas acoustics

Date: 22 March 2024

 $\textbf{File Reference:} \quad 3739R20240307tbGerflorAustralasia_Cushionoak$

Prepared For: Gerfor Australasia

Acoustical Report: Impact sound insulation – Various Vinyl Samples

1.0 INTRODUCTION

Koikas Acoustics Pty Ltd was requested by Gerfor Australasia to conduct impact noise testing on the

following floor systems:

Test 01: Kenbrock CushionOak Supreme

A total of one (1) test was conducted which included the base ceiling/floor system of a concrete slab

and suspender ceiling.

The purpose of undertaking these impact noise tests was to quantify the acoustic performance of

the flooring systems.

Test results were compared to the acoustic requirements of Part F5 of BCA (Building Codes of

Australia) and the standards prescribed by the Association of Australasian Acoustical Consultants

(AAAC).

All measurements were carried out as per the guidelines and procedures outlined in:

• AS/NZS ISO 140.7:2006 "Field measurements of impact sound insulation of floors"

The rating was determined as per

• AS ISO 717.2-2004 "Rating of sound insulation in buildings and of building elements".

koikas acoustics

Date: 22 March 2024

File Reference: 3739R20240307tbGerflorAustralasia_Cushionoak

Prepared For: Gerfor Australasia

2.0 TEST LOCATION AND CONDITIONS

2.1 TESTING SITE

The following impact noise tests were undertaken:

- The un-furnished bedroom on the upper floor (the <u>source room</u>);
- The un-furnished bedroom on the lower floor (the receiver room)

of a residential apartment building in the suburb of Carlingford on Wednesday 6th March 2024.

2.2 SUB-BASE AND FLOORING SYSTEM

Koikas Acoustics has been advised that the common ceiling/floor system of the subject residential unit is constructed of:

- Approximately 200 mm thick concrete slab;
- Suspended ceiling cavity, and
- Plasterboard ceiling.

Hereafter referred to as the "existing ceiling/floor system (ECFS)".

2.3 TESTING SAMPLES

The tests were conducted on the ECFS described in Section 2.2 of this report with the following floor covering and underlay samples:

- Test 00: Bare concrete floor (ECFS only) for comparison purposes only
- Test 01: Kenbrock CushionOak Supreme + ECFS

koikas acoustics

Date: 22 March 2024

File Reference: 3739R20240307tbGerflorAustralasia_Cushionoak

Prepared For: Gerfor Australasia

Acoustical Report: Impact sound insulation – Various Vinyl Samples

3.0 IMPACT NOISE RATING CRITERIA

3.1 BCA 2022

Regarding the current BCA 2022, a floor in a Class 2 or Class 3 building must have a weighted standardised impact sound pressure level (L'_{nTw}), not more than 62 determined under AS/ISO 717.2 if it separates sole-occupancy units.

3.2 AAAC STAR RATING SYSTEM

Furthermore, the Association of Australian Acoustical Consultants (AAAC) Guideline for Apartment and Townhouse Acoustic Ratings, the following Table (Section C) describes the acoustic ratings concerning the Star Rating System as listed in Table 1 below.

Table 1. Star Rating Requirements for Inter-tenancy Activities – Published by the AAAC						
INTER-TENANCY ACTIVITIES		3 Star	4 Star	5 Star	6 Star	
(c) Impact isolation of floors						
- Between tenancies LnTw ≤	65	55	50	45	40	
- Between all other spaces & tenancies LnTw≤	65	55	50	45	40	

Note, Koikas Acoustics is of the understanding that the impact noise ratings in Table 1 infer L'_{nTw} and not L_{nTw} . L_{nTw} is an impact noise rating derived from tests undertaken in a laboratory and L'_{nTw} is derived from field tests.

koikas acoustics

Date: 22 March 2024

File Reference: 3739R20240307tbGerflorAustralasia_Cushionoak

Prepared For: Gerfor Australasia

4.0 ASSESSMENT/TESTING PROCEDURES

4.1 PARTITION TESTING

4.1.1 Generation of the sound field in the source room

The sound field was generated by a Cesva MI006 tapping machine situated in the source room on

the specific floor under test. Several measurement positions on each floor were tested as required

by the standard.

4.1.2 Receiving space measurement

Impact noise levels were recorded in the receiving space with an NTi Audio XL2 spectrum analyser

sound level meter. The spatial-averaging method of measurement was employed for impact noise

tests with relevant traverse durations and minimum distances to reflectors and boundary walls

observed.

4.1.3 Reverberation time and background noise

Additional measurements were taken of the background noise (Lb) and reverberation time (T). The

background noise measurement was used to ensure that existing ambient noise did not influence

the internal noise measurement. The reverberation time was used to calculate the amount of

absorption (A) in the receiving room so that the measurement can be standardised to a reference

reverberation time of 0.5 seconds.

koikas acoustics

Date: 22 March 2024

File Reference: 3739R20240307tbGerflorAustralasia_Cushionoak

Prepared For: Gerfor Australasia

5.0 MEASURED RESULTS AND ANALYSIS

The results of the acoustic tests are tabulated below. Comprehensive measurement and analysis data are presented as an Appendix to this report.

Table 2. Summary of impact noise test results					
System Tested ²	L'nTw ⁴	FIIC ^{5,6}	AAAC ⁷		
Test 00: Bare concrete floor (ECFS only) – for comparison purposes only		41	2 Star		
Test 01: Kenbrock CushionOak Supreme + ECFS	L'nT,w 55	53	3 Star		

Detailed calculations of the partition system impact noise insulation (ceiling/floor) are attached as **Appendix A**.

The following is also noted:

- The acoustic ratings provided in this report are indicative and for a comparative purpose only.
- 2. All floor testing samples were conducted on the existing sub-base detailed in this report.
- Tests were also conducted on the bare slab area of the apartment (living/dining area) for comparison purposes.
- 4. The lower the rating number the better the acoustic performance for L'_{nTw} ratings.
- 5. The relation between Field Impact Insulation Class (FIIC) and Impact Insulation Class (IIC) can be described by the formula FIIC + 5 = IIC.
- 6. The Higher the IIC and FIIC the better the impact insulation.
- 7. The higher the AAAC start rating the better the impact insulation.
- 8. The acoustic ratings provided in this report are indicative of a 1 m² sample and should be used for comparative purposes only. Acoustic ratings will vary depending on the testing environment/conditions including, materials/structures of the existing ceiling/floor system, room volume, internal layout and workmanship. Even with the same testing environment, acoustic ratings can vary from room to room and between buildings as no two buildings are identical. A fully laid flooring system typically presents a lower acoustical rating, i.e. up to 3 rating points less. For example, where the test results are compared against a 1 m² sample flooring system resulting in L'nTw 53, the same flooring laid from wall to wall could result in an acoustical rating of L'nTw 56 or more, which is a reduction in the acoustical performance rating.

koikas acoustics

Date: 22 March 2024

File Reference: 3739R20240307tbGerflorAustralasia_Cushionoak

Prepared For: Gerfor Australasia

Acoustical Report: Impact sound insulation – Various Vinyl Samples

- 9. Product installation details and methodologies must be sought from product suppliers, installers or other experts. Koikas Acoustics is not liable for any product defects.
- 10. The information provided in this report relates to acoustic matters only. Supplementary advice should be sought for other matters relating to flooring installation, construction, design, structural, fire-rating, waterproofing, and the like.
- 11. The information contained herein should not be reproduced except in full.

koikas acoustics

Date: 22 March 2024

File Reference: 3739R20240307tbGerflorAustralasia_Cushionoak

Prepared For: Gerfor Australasia

Acoustical Report: Impact sound insulation – Various Vinyl Samples

6.0 CONCLUSION

Koikas Acoustics was requested by Gerfor Australasia to undertake impact noise testing of their

underlay products. The acoustic performances of the various ceiling/floor systems were calculated

and compared against the current BCA 2022 and AAAC Star Ratings commonly used in Australia.

The calculated acoustic ratings of the tested flooring systems are summarised and presented in

Table 2 of this report. A detailed graphical presentation of the acoustic performance of the tested

flooring is attached as Appendix A. This report should be reproduced in full including the attached

appendix.

The acoustic ratings provided in this report are indicative of the acoustical impact rating

performance. Acoustic ratings will vary depending on the testing environment/conditions

including, materials/structures of the existing ceiling/floor system, room volume, internal layout

and workmanship. Even with the same testing environment/conditions, acoustic ratings can vary

from building to building.

It is recommended that in-situ testing be conducted before any full fit-out as the sub-base

ceiling/floor system and the wall junctions could impact the noise transfer to the unit below.

Floor coverings must not make contact with any walls or joineries (kitchen benches, cupboards etc).

Hard floor coverings must not touch the walls and/or joineries and skirtings attached to the wall

must not touch the flooring. Gaps should be filled with a suitable mastic-type sealant. Acoustic

ratings will be degraded if the above precautions and treatments are not implemented.

koikas acoustics

Date: 22 March 2024

File Reference: 3739R20240307tbGerflorAustralasia_Cushionoak

Prepared For: Gerfor Australasia

APPENDIX A

APPENDIX

A

APPENDIX

FIELD MEASUREMENTS OF IMPACT SOUND INSULATION OF FLOORS

Date of Test : Wednesday, 6 March 2024

3739

Project No.: Testing Company: Koikas Acoustics Nick Koikas Checked by:

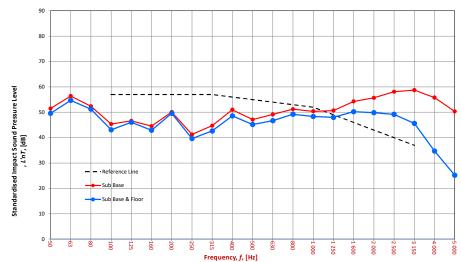
Place of Test: Residential Units at Carlingford

Client Kenbrock Flooring

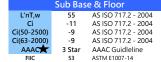
Client Address

Thickness (mm Density (SI) Description Kenbrock Cushion Oak Supreme NA Floor Concrete 200 System Suspended Ceiling (plasterboard)

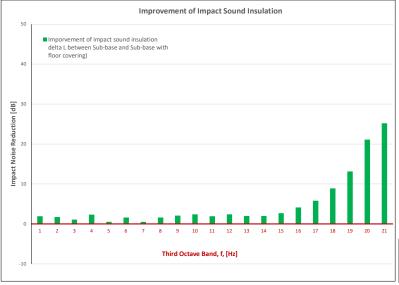
Room Width: 2.9 Floor Length: m m²


Sample Width: Dimensions Length: m m² Area:

	Location	Width	Length	Area	Height	Volume
Receiver Rm	Bedroom	3	2.9	8.70	2.7	23.49


Room Surfaces Walls Ceiling Floor

koikas acoustics #


Frequency	L'nT (one-third octave) dB				
f	Sub Base	Sub Base			
Hz	Sub buse	Sub Base Floor	Floor		
112		11001	Underlay		
			Ondendy		
50	51.5	49.6	NA		
63	56.4	54.7	NA		
80	52.4	51.3	NA		
100	45.4	43.1	NA		
125	46.6	46.1	NA		
160	44.5	42.9	NA		
200	50.1	49.6	NA		
250	41.2	39.6	NA		
315	44.7	42.6	NA		
400	51.0	48.6	NA		
500	47.1	45.2	NA		
630	49.1	46.7	NA		
800	51.2	49.2	NA		
1 000	50.4	48.4	NA		
1 250	50.7	48.0	NA		
1 600	54.3	50.2	NA		
2 000	55.7	49.9	NA		
2 500	58.1	49.2	NA		
3 150	58.7	45.6	NA		
4 000	55.8	34.7	NA		
5 000	50.4	25.2	NA		

Sub Base					
L'nT,w	63	AS ISO 717.2 - 2004			
Ci	-15	AS ISO 717.2 - 2004			
Ci(50-2500)	-13	AS ISO 717.2 - 2004			
Ci(63-2000)	-15	AS ISO 717.2 - 2004			
AAAC ★	2 Star	AAAC Guidleline			
FIIC	41	ASTM E1007-14			

Definitions of Noise Metrics

FIIC:

Field Impact Insulation Class is a single-number rating of how well a floor system attenuates impact type sounds, such as footsteps. Calculated from third-octave band normalised impact sound pressure level data and referenced to 10 m² as described in ASTM E989. The higher the single-number rating, the better its impact insulation performance.

The Weighted Standardised Impact Sound Pressure Level when measured in situ referenced to a reverberation time (RT60) of 0.5 seconds. Used by the AAAC to determine their respective Star Rating.

Ci-

Spectrum adaption term is a low frequency correction factor. Typically for massive floors such as concrete, the values are about zero while for timber joist floors Ci is positive because of the low resonant frequencies. Considers frequency range between 100 -and 2500 Hz.

Ci(50-2500):

Same as above, but for the frequency range 50 -2500 Hz.

Ci(125-2000):

Same as above, but for the frequency range 125 -2000 Hz.

AAAC Star R.	2	3	4	5	6
L'nT,w	65	55	50	45	40
FIIC	45	55	60	65	70
Comments	Below BCA 62	Clearly Audible	Audible	Barely Audible	Normally Inaudible